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High-Order Accurate CFD/CSD Simulation 
of the UH-60 Rotor in Forward Flight 

Jasim U. Ahmad1 and Neal M. Chaderjian2 
NASA Ames Research Center, Moffett Field, CA 94035 

Time-dependent Reynolds-averaged Navier-Stokes simulations for a highly flexible 
aeroelastic UH-60A rotor have been carried out for forward flight. The fluid structure 
interaction is accomplished by loosely coupling the OVERFLOW Computational Fluid 
Dynamics (CFD) code with the helicopter comprehensive code CAMRAD II.  The latter 
includes Computational Structural Dynamics (CSD) with rotor trim capability. 
Computations are performed using spatial differences of 5th-order for inviscid fluxes, 2nd-
order accurate viscous fluxes,  and 2nd-order time accuracy.  Dual time-stepping accuracy is 
examined and recommendations provided for an appropriate time step and number of 
subiterations.  The predicted sectional normal forces and pitching moments are compared 
with flight-test data for high-speed and low-speed level-flight conditions. The low-speed case 
has significant Blade Vortex Interaction (BVI). The current simulations demonstrate a 
factor of two improvement in state-of-the-art airloads prediction accuracy for CFD/CSD 
simulations.  This is attributed to the use of improved spatial accuracy. 

I. Introduction 
OMPUTATIONAL Fluid Dynamics (CFD) simulation of rotorcraft flow fields using the Reynolds-averaged 
Navier-Stokes (RANS) equations is a challenging multidisciplinary problem. This is primarily due to the need 

to model the aeroelastic interaction of the fluid dynamics with highly flexible rotor blades.  A successful 
aerodynamic simulation of a rotor/fuselage system requires the modeling of unsteady three-dimensional flows that 
may include transonic shocks, dynamic stall with boundary layer separation, complex vortical wakes, blade/wake 
and wake/wake interactions, and body motions.  Moreover, a stable and robust method to couple the CFD with a 
Computational Structural Dynamics (CSD) model is required.  Consequently, the aerodynamic and aeroacoustic 
performance prediction for rotorcraft lags compared to its fixed-wing counterpart. 

The helicopter industry often uses comprehensive rotor codes as part of the design process. These 
comprehensive codes typically include a simplified linear aerodynamic model, a CSD method for flexible rotor 
blades, and a trim algorithm.  However, this very efficient design tool lacks the high fidelity aerodynamics needed 
for nonlinear rotorcraft flows.  It is common at NASA and in the rotorcraft industry to carry out a parameter sweep 
of rotorcraft simulations with a less computationally costly comprehensive code, such as CAMRAD II,1 when linear 
aerodynamics is sufficiently accurate. When nonlinear aerodynamics is important, coupled simulations are carried 
out using a more computationally costly CFD code, such as OVERFLOW,2-3 together with a comprehensive code.  
The idea is to replace the linear aerodynamics in the comprehensive code with the nonlinear aerodynamics provided 
by the high-fidelity CFD code through the loose-coupling process.   

One of the goals of NASA’s Subsonic Rotary Wing (SRW) Project, which is part of NASA’s Fundamental 
Aeronautics Program, is to develop physics-based computational tools to address the challenges and accuracy 
requirements of aeromechanics simulation.  Yamauchi and Young4 recently reported on the state-of-the-art (SOA) of 
aeromechanics simulation.  This assessment found that the current SOA CFD prediction of rotor normal force differs 
from experiment by about M2Cn≈4.4%, and the computed pitching moment differs from experiment by about 
M2Cm≈4.7%.  These values were obtained by comparing computed and experimental sectional values from different 
CFD simulations and experiments as a function of azimuth for one rotor revolution.  Details of this comparison 
process are described in Ref. 4.  

An example of a SOA simulation coupling CFD and CSD for a flexible UH-60A rotor is reported by Potsdam et 
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al.5  They used the OVERFLOW-D overset CFD code to examine three different cases with different grid 
resolutions and mixed temporal/spatial accuracy.  They solved the RANS equations on body-conforming curvilinear 
grids using 1st-order temporal accuracy and 2nd-order spatial accuracy.  The inviscid Euler equations were solved on 
the off-body Cartesian grids using 3rd-order temporal and spatial accuracy.  The 3rd-order spatial accuracy consisted 
of a 4th-order accurate central difference with a 3rd-order accurate artificial dissipation term.   These Cartesian off-
body grids are used to resolve the rotor wake and extend the computational domain to the far field.  The inviscid 
higher-order accuracy in the rotor wake region was used to minimize vortex diffusion.  One way to improve upon 
these rotor simulations is to use higher-order spatial accuracy.  It is anticipated that this will improve the computed 
vortex strength generated at the rotor tip, and better preserve the vortex strength within the complex rotor wake 
region.  This can be especially important when there is significant Blade Vortex Interaction (BVI).  The overall 
result should be an improved prediction of time-dependent rotor loads. 

OVERFLOW2-3 is a state-of-the-art CFD code developed at NASA that solves the time-dependent RANS 
equations in generalized curvilinear coordinates using overset grids.  A recent upgrade (Version 2.2) includes up to 
6th-order spatial accuracy using central differences.6  This updated CFD code has been loosely coupled with the 
CAMRAD II helicopter comprehensive code to take advantage of CAMRAD’s CSD and trim capability.  The work 
reported here simulates a flexible rotor flowfield using high-order spatial differencing.  Details of the spatial 
accuracy are described in the Flow-Solver Algorithm section.  The goal is to demonstrate an improvement over the 
SOA loads prediction accuracy by at least 20% for the UH-60A Airloads database.7  The database provides 
aerodynamic pressures, structural loads, control positions, and rotor forces and moments. Two level flight conditions 
are chosen from this database, i.e., flight counter C8513 and C8534. Flight counter C8534 is a high-speed level-
flight condition, while flight counter C8513 is a low-speed case with significant BVI.  The BVI case is considered 
more difficult to accurately simulate than the high-speed case. 

The numerical approach is described in the next section, followed by a discussion of results and concluding 
remarks.   

II. Numerical Approach 
The numerical approach described below includes a brief description of the CAMRAD II comprehensive code, 

the fluid/structure loose coupling procedure, the UH-60A geometry and overset grids, and the OVERFLOW CFD 
code.   

A. Comprehensive Code: CSD and Rotor Trim 
The comprehensive code CAMRAD II1 developed at NASA performs structural dynamics and rotor trim for a 

coupled CFD/CSD simulation. This code is widely used in the helicopter industry. It models the flexible blade 
structure using nonlinear finite elements. CAMRAD II has its own simplified aerodynamic lifting-line model with 
airfoil table lookup, as well as simplified wake models. Although this code has been widely used, its prediction 
capability is limited due to the low fidelity aerodynamic modeling. However, it has been used with high-fidelity 
CFD models in a loosely coupled manner. The details of this comprehensive code are described in Ref. 1, and the 
coupling strategy is described below and in Ref. 5. 

B. Fluid/Structure Interaction: Loose Coupling 
For static flight conditions, a loose coupling between CFD and CSD is employed, as the interaction between the 

structure and aerodynamic response is not necessary at every flow solver time step.  This coupling is done in a 
periodic manner, as specified by the user. It is typical to couple the CFD and CSD once every revolution, or some 
fraction of a revolution based on the number of rotor blades.  For example, a four-blade rotor may be coupled every 
¼, ½, or full revolution. Quicker fluids/structures convergence may be obtained by more frequent coupling. 
However, depending on the flow conditions, too frequent a coupling may result in a divergent process. At each 
coupling step, CFD rotor loads are provided to CAMRAD and, in turn, it uses these CFD loads to make a correction 
to its own lifting-line aerodynamics model to re-trim the rotor.  CAMRAD then provides a new rotor-blade 
deflection file to the CFD code.  When this loosely coupled process is fully converged, the CFD airloads have fully 
replaced the comprehensive analysis airloads.   

Figure 1 shows a flow chart for the loose coupling iterative procedure. The detailed logistics for running the 
coupled CAMRAD and OVERFLOW process is accomplished using a C-shell script. This script helps automate the 
run process, which uses many CAMRAD tools. The reader is again referred to Refs. 1, 5 for additional details. 
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C. Rotor Geometry/CFD Grid 
The overset grid system used in the present simulations was generated using Chimera Grid Tools (CGT).8  The 

CGT contains a very efficient and modular grid scripting library used for grid manipulation, generation, 
reorganization, overset hole cutting surfaces, and generation of OVERFLOW input files. This scripting procedure 
allows one to produce high quality surface grids and subsequent volume grids with a set of input parameters. These 
input parameters allow one to quickly and automatically modify the grid system for the existing geometry. 

The UH-60A rotor blade is highly twisted.  A schematic of the geometry and the O-grid system used in the 
present simulations is shown in Fig. 2.  The blade surface definition is provided in PLOT3D format.3 The blade tip 
geometry is faithfully represented in the surface grid, including all sharp edges. The blade root is extended inboard 
towards the hub. The overset grids for each rotor blade consist of three separate grids: the main rotor-blade body, a 
cap grid at the outboard tip, and a cap grid at the inboard root. All three grids use an O-mesh topology that maintains 
good surface resolution. Each blade surface mesh consists of approximately 114 thousand points. In the present 
simulations, an idealized hub is placed at the center of the rotor-blade system.  This provides a more realistic flow 
condition along the rotor spin axis, without the complication of generating grids about the actual UH-60A hub 
geometry.  “Near-body” grids refer to the curvilinear overset grids attached to the rotor/hub bodies.  These are 
imbedded into Cartesian “off-body” grids that resolve the rotor wake region and extend the computational domain to 
the far field. These off-body Cartesian grids are automatically generated within OVERFLOW according to user 
specified input parameters. Moreover, the off-body Cartesian grids are generated at various levels of resolution 
starting from “Level 1” (L1) in the rotor-wake region, to successively coarser grid levels to rapidly and efficiently 
extend the grid system to the far field.  For this study, the L1 vortex-wake grid spacing is set to 0.1ctip, where ctip is 
the rotor tip chord length. The far-field boundaries are about five rotor radii from the rotor center. The overset mesh 
for the rotor, idealized hub and automatically generated off-body grids consists of approximately 69 million grid 
points. The body grids are about 50% of the total grid size.  The viscous spacing provides an average y+≈0.1 near the 
outboard tip. The rotor-blade schematic, Fig. 2c, shows spanwise stations where loads will be compared with flight-
test data. 

 
Figure 1. Loose coupling procedure with OVERFLOW and CAMRAD II. 
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D. Flow-Solver Algorithm 

OVERFLOW is a finite-difference, overset grid, RANS CFD code. Up to 6th-order spatial accuracy for inviscid 
fluxes and 2nd-order time accuracy are available.6 OVERFLOW has two modes of operation, stationary grids and 
dynamic grid motions. In the case of grid movement, both rigid-body motions and deforming grids are permitted.  
Inter-grid overset communication can be established external to OVERFLOW using the PEGASUS code.9 This is 
only done for non-moving grid cases.  For the present dynamically moving grid simulations, inter-grid 
communication is established using X-Rays3 and the very efficient Domain Connectivity Function3 within 
OVERFLOW.  OVERFLOW has several turbulence models available. For the present study, the one-equation 
Spalart-Allmaras model10 is used.  OVERFLOW has many flow-solver options described in Refs. 2-3.  The effect of 
subiteration convergence on temporal accuracy is quantified in the Results section. 

A 2nd-order accurate dual time-stepping algorithm is used to solve the RANS equations, and is based on the dual 
time-stepping methods described in Refs. 11-12.  The dual time-stepping algorithm is now described, and 
subiteration accuracy is discussed in the results section.   

The RANS equations can be written in strong conservation-law form as 

 

€ 

∂Q
∂t

+
∂ (F −Fv)

∂x
+
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+
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∂z
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where 

€ 

Q = ρ ρu ρv ρw e[ ]Τ  is the vector of conserved variables; F, G, and H are the inviscid flux vectors; 
and  Fv, Gv, and Hv are the viscous flux vectors. 

An artificial time term is introduced to the governing equations in order to provide a relaxation (subiteration) 
procedure between physical time steps. 
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where t corresponds to physical time and τ corresponds to artificial (pseudo) time.  
First-order accurate Euler implicit differencing is used for the artificial time discretization, while a second-order 

accurate three-point backward difference is used for the physical time discretization.  An implicit approximate 
factorization form of Eq. (2) in generalized coordinates is given by 
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where 

 
Figure 2. Blade grid and surface geometry.   
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In these equations, 

€ 

ˆ Q = Q /J , where J is the transformation Jacobian, and A, B, and C are the inviscid flux 
Jacobians.  The variable k is the subiteration index, while the variable n is the time-step index.  Finally, 
ΔQ̂k = Q̂k+1 − Q̂k . Subiteration convergence implies that 

€ 

ˆ Q k → ˆ Q n+1, which is second order accurate in time.   
A diagonalized implicit algorithm13 is used to solve this equation, and central differences are used to discretize 

the spatial derivatives. Upwind difference options are available in OVERFLOW, but were not used in this study. 
The dual time-stepping algorithm has three main advantages over a single time-stepping approach.  It is more 

robust, allows for larger time steps, and the subiteration procedure eliminates the factorization and linearization 
errors in the diagonalized approximate factorization algorithm.  However, one must be careful to verify that enough 
subiteration steps are taken to ensure adequate subiteration convergence to the new time step.  If the residual drop at 
each subiteration is not sufficient, then the resulting simulation is not time accurate. 

The spatial accuracy consists of evaluating the convective terms with 6th-order central differences and 5th-order 
artificial dissipation.  This results in a 5th-order discretization on the uniform Cartesian off-body grids.  However, all 
viscous terms are evaluated with 2nd-order accurate central differences.  The grid metrics on the curvilinear near-
body grids are also 2nd-order accurate in space.  This discretization is referred to as 5th-order spatial differencing 
throughout this paper.  Although the algorithm is still formally 2nd-order accurate in space, this differencing scheme 
has lower diffusion and dispersion errors, and an improved flow field resolution than a 3rd-order approach.  Further 
details are described by Pulliam.6   

III. Results 
NASA and the US Army, as a part of the UH-60A Airloads program, maintain a unique and extensive flight-test 

database7 for level flight and transient maneuvers. The database provides aerodynamic pressures, structural loads, 
control positions, and rotor forces and moments. This database is extensively used for the validation of both 
aerodynamic and structural models. The test matrix provides a range of flight conditions.1,7  This study presents 
results for two flight counters. Flight counter C8534 is a high-speed level-flight case that is used for analysis and 
verification for Fluid Structure Interaction [FSI] phase lag problems. Flight counter C8513 is a low-speed case with 
significant BVI.  

The high-speed flight counter C8534 is considered the easier of the two cases presented in this paper.  The 
advance ratio is µ = 0.37, the freestream Mach number is M∞=0.236, and the tip Mach number is Mtip=0.64.  
Reference 7 mentions that many investigations have been performed on this flight-test counter to understand 
unsolved analysis problems for the advancing blade azimuthal phase lag and underprediction of blade pitching 
moments. A fuselage was not included in these simulations.  

Figure 3 shows a top view of the vortex wake for flight counter C8534. Notice how quickly the vortex cores are 
swept downwind.  Note also how the 5th-order spatial differences provide good resolution of the rotor blades’ wake 
shear layers as they convect downwind.   

The vortex cores shown in Fig. 3 are rendered using iso-surfaces of the Q-criterion density (Qd).  This is given 
by the expression 
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 (4)

 
where Sij  and Ωij  are the magnitudes of the strain-rate and spin tensors, respectively.  The Q-criterion density 

provides a convenient way to visualize vortices.  This nondimensional quantity has a range of -1≤Qd≤1. Since Qd is 
computed from tensors, it is also invariant with coordinate rotations. 



 
 
6 

 
The effect of time step and number of dual-time subiterations required for time accuracy was examined for the 

high-speed case.  This was accomplished by varying the physical time step from the reference value (∆t0=¼° blade 
rotation) and the number of subiterations from the reference value (k0=35), see Eq. 3.  These reference values were 
originally chosen from experience to provide time accurate results.  The structural deflections are converged for the 
reference conditions, and used throughout this time-accuracy study.  The fundamental waveform variation of the lift, 
drag, pitching and yawing moments with the number of subiterations and time step was examined.  The total rotor 
pitching moment coefficient (CM) variation with azimuth angle is shown in Fig. 4a.  The azimuth angle, ψ, is 
proportional to time and shown in Fig. 4b.  There are four similar waveforms per blade revolution (one for each 
blade).  The last waveform is shown in Fig. 4a.  The most notable differences in the waveforms occur near ψ=330°, 
where the most converged result, k=70, differs markedly from the first few results, k=5, 10, 15, …  

 
The root-mean-square (RMS) error between the computed waveform and the most converged waveform 

(∆t=∆t0/4, k=70) for the lift, drag, pitching and yawing moments is shown in Fig. 5.  This provides a quantitative 
measure of how dual-time subiterations affect time accuracy.  Notice that of the four force and moment coefficients 
examined, the pitching moment coefficient has the largest RMS error.  The pitching moment coefficient will 
therefore be the focus of this time-accuracy study.  The goal is to obtain an RMS error of less than 1% in CM with 
the least amount of computational work.  A study has been performed for the other forces and moments with similar 
results.   

 
Figure 3.  Top view of vortices visualized with the Q-criterion density.  High-speed case, 
flight counter C8534, M∞=0.236, µ = 0.37.   

     
(a) CM waveform variation with dual-time subiteration. (b) Sketch of rotor axis system. 

Figure 4.  High-speed case flight counter C8534, M∞=0.236, µ = 0.37. 
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Figure 6 shows how the %RMS error in CM varies with physical time step and the number of dual-time 

subiterations.  Notice that the three smallest time steps in Fig. 6 were able to achieve an RMS error of less than 1%, 
but the largest time step,  ∆t=2∆t0, was unable to do so.  In fact, the largest time step indicates a tendency to diverge 
with a large number of subiterations. 

 
The relative Optimal Computational Work (OCW) needed to achieve less than 1% RMS error in CM is used to 

quantify the computational efficiency of the dual-time procedure.  In this case, “optimal” means achieving a 1% 
RMS target error while advancing the flow solution with the smallest amount of CPU wallclock time.  The 
computational work is proportional to the total number of steps and processors, i.e., (number of time 
steps/revolution) ×  (number of dual-time subiterations) ×  (No. CPUs).  The relative OCW is defined as the ratio of 
the optimal computational wallclock time and a reference value, and is given by the expression 
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where koptimal is the least number of subiterations needed to achieve a 1% RMS error.  In this study, the number of 
CPUs is kept fixed, so (No. CPU/No. CPUo)=1.   

 
Figure 5.  Force and moment variation with dual-time subiteration.  
High-speed case flight counter C8534, M∞=0.236, µ = 0.37.   
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Figure 6.  Percent RMS error of CM with time step and dual-time 
subiteration.  High-speed case flight counter C8534, M∞=0.236, µ = 0.37.   
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Table 1 shows that the least amount of computational work needed to obtain a CFD solution is obtained by using 
the reference time step and subiterations, i.e., k=35, ∆t=¼°.  For this case, using a smaller time step requires fewer 
dual-time subiterations to achieve a 1% RMS error in CM.  However, the amount of computational work is still 
larger than the reference value because there are more time steps per rotor revolution.  The optimal choice of the 
original reference parameters is attributed to user experience.  The reference values, ko=35 and ∆to=¼°, are used for 
both flight counter cases presented in this paper.  The number of L1 Cartesian grid cells traversed by the rotor tip for 
each time step is also listed in Table 1.  Notice that the largest time step, which had a tendency for subiteration 
divergence (see Fig. 6), caused the rotor tip to traverse more than one Cartesian grid cell during a time-step advance.  
For the other time steps, the rotor tip traveled less than one grid cell during a time-step advance.  The tendency to 
diverge is attributed to excessive L1 grid-cell travel.   

 
This time-accuracy study suggests that larger time steps tend to result in less computational work while 

maintaining time accuracy.  However, if the time step is too large, dual-time convergence may suffer or even 
diverge.  A rule of thumb is to use the largest time step possible that resolves all frequencies of interest, and that has 
less than one L1 Cartesian grid-cell travel by the rotor tip, and use the smallest number of subiterations for a desired 
level of temporal convergence (time accuracy).   

Now that time accuracy has been established, the computational sectional loads for the high-speed case (C8534) 
are compared to the UH-60A airloads data.7  The blade motions (and resultant loads) are trimmed to the measured 
thrust and upper shaft bending moments. The non-dimensional sectional forces and moments, M2Cn and M2Cm, are 
normalized by the speed of sound rather than the local sectional velocity in order to compare sectional values in a 
global sense.  

Following conventional rotorcraft nomenclature, ψ = 0 corresponds to the blade span pointing in the direction of 
the freestream velocity.  For the advancing side of the blade motion, e.g., ψ = 90 degrees, the rotor blade leading 
edge experiences a relative flow consisting of the freestream plus the rotational speed, while for the retreating side, 
e.g., ψ = 270 degrees, the relative flow consists of the freestream minus the rotational speed. Airload comparisons 
between computation and experiment have the mean removed due to uncertainty in the measured data.5,7 

Figures 7 and 8, respectively, show the sectional pitching moment and sectional normal force coefficient 
variation with azimuth angle, ψ, at different radial stations, see Fig. 2c.  The pitching moments at the inboard 
sections, r/R = 0.40 and 0.675, are in good agreement with the flight-test data.  There are no significant wake-blade 
interactions. The pitching moments at the section immediately following the trim tab, r/R=0.865, as well as the 
outboard section, r/R=0.965, show some differences due to negative loading on the advancing side. Overall, the 
agreement is fairly good.  The normal forces show very similar trends and are in overall good agreement with the 
flight-test data.  

Figure 9 shows the loose coupling convergence for both normal force and pitching moments at a radial station of 
r/R = 0.965. Each of the cycles represents one loose coupling per ½ revolution. Convergence takes longer on the 
advancing side of the rotor disk, i.e., 90°≤ψ≤180°.  The CFD and CSD interaction is fully converged after 6 or 7 
cycles. 

∆t/∆to Subiterations 
(koptimal) 

Relative OCW 
(Less Than 1% RMS Error) 

Rotor Tip Travel 
(L1 Grid Cells) 

0.25 20 2.29 0.17 
0.50 27 1.54 0.34 
1.00 35 1.00 0.68 
2.00 NA Error never less than 1% 1.35 

Table 1.  Relative OCW needed to obtain less than 1% RMS error in CM, and 
blade-tip travel. High-speed case C8534, M∞=0.236, µ = 0.37, k0=35, ∆t0=¼°.   
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The goal of improving the SOA prediction accuracy in normal force by 20% requires an overall error of less than 

3.5%.  The current simulation has been compared with experiment in the manner described in Ref. 4, and an overall 
error of 2.1% was achieved, well within the stated goal. A 20% improvement in the SOA prediction of pitching 
moment required 3.8% prediction accuracy.  The current simulation is compared with experiment with an overall 
error of 2.5% in normal forces, also achieving the accuracy goal. This improvement in the SOA prediction accuracy 
is attributed to the use of 5th-order spatial differencing, rather than 3rd-order differencing which had typically been 
used in the past.   

 
 

 
Figure 7. Pitching moment coefficient variation with azimuth angle at various radial stations.  High-speed case, 
flight counter C8534, M∞=0.236, µ = 0.37. 



 
 

10 

 

 
A second case is now presented.  The flight counter C8513 corresponds to a level-flight condition with advance 

ratio of µ = 0.15. The freestream Mach number is M∞=0.096. The airloads are dominated by the presence of BVI. 
The flow visualization presented in Figure 10 shows a very strong BVI in the top and oblique views. This BVI is 
observed in Fig. 10 by the rotor blades slicing through the vortex cores. The vortex cores are again rendered using 
iso-surfaces of the Q-criterion density.  A transparent cutting plane, showing velocity magnitude contours, clearly 
shows the circumferential velocity fields generated by the vortices.  

 

 
Figure 8. Normal force coefficient variation with azimuth angle at various radial stations.  High-speed case, 
flight counter C8534, M∞=0.236, µ = 0.37. 
 

 
     (a) Normal force convergence.          (b) Pitching moment convergence. 

Figure 9. CFD/CSD loose-coupling convergence. High-speed case, flight counter C8534, M∞=0.236, µ = 0.37. 
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Figure 11 compares the computed sectional pitching moment coefficient with flight-test data at different radial 

stations, see Fig. 2c. At the inboard station, r/R = 0.40, the pitching moment compares very well with experiment. 
From the radial station, r/R = 0.675 and onward, the BVI events produce significant variations in pitching moment. 
Overall, the pitching moment compares well with flight-test data for this complex flow.  At r/R = 0.675, prediction 
is better on the advancing side, ψ=90°, and somewhat underpredicted when the blade is retreating ψ=270°. At r/R = 
0.865, the overall trends, including shape and magnitude, are reasonably captured at the advancing side, but the 
lower peak is underpredicted at the retreating side. At the outboard blade section, r/R = 0.965, there is a rapid 
variation in the pitching moment coefficient with azimuth angle, with strong sharp peaks.  This is evidence of a very 
strong BVI.  The computations compare well with the measured data and follow the general trends. 

 
(a) Top view. 

 
(b) Oblique view.  Velocity magnitude shown on transparent cutting plane. 

Figure 10. Vortices visualized with the Q-criterion density. BVI case, flight counter C8513, 
M∞=0.096, µ = 0.15. 
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Figure 12 compares the computed sectional normal force coefficient with flight-test data at different radial 

stations.  The inboard variation of the normal force with azimuth angle compares very well with the flight-test data 
at r/R = 0.40 and 0.675.  There is also a good comparison between the computed and measured normal force at the 
outboard stations, r/R = 0.865 and 0.965.  The sharp peaks again indicate a strong BVI.  There appears to be some 
phase error in the computed results at r/R = 0.865, near ψ=90°. There are several possible reasons for this 
discrepancy. There may be a need for more reference sections to transfer the CFD load to the CSD model, or higher-
order time accuracy may be needed to reduce the convective error. The turbulence model may not be predicting the 
turbulent scales properly, or the measured data may also have some problems.  Nevertheless, the computed normal 
force compares well with the flight-test data for this very complex CFD/CSD simulation.  

Figure 13 shows the loose coupling convergence for both normal force and pitching moments at a radial station 
of r/R = 0.965. Each of the cycles represents one loose coupling per ½ revolution. Convergence takes longer on the 
advancing side of the rotor disk, i.e., 90°≤ψ≤180°.  The CFD and CSD interaction is converged in less than 10 loose 
coupling cycles. 

The goal of improving the SOA prediction accuracy in normal force and pitching moment by at least 20% was 
once again met as in the previous flight counter.  The overall difference between computed and measured normal 
force and pitching moment, integrated over one rotor revolution, was 2.4% and 2.2%, respectively.  This represents 
an improvement of about a factor of two over the SOA values of 4.4% and 4.7%.4   

 

 
Figure 11. Pitching moment coefficient variation with azimuth angle at various radial stations.  BVI case, flight 
counter C8513, M∞=0.096, µ = 0.15. 
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IV. Summary and Conclusions 

Time-dependent Reynolds-averaged Navier-Stokes simulations for a flexible UH-60A rotor have been carried 
out under high-speed and blade vortex interaction conditions.  These aeroelastic simulations were obtained by 
loosely coupling the OVERFLOW CFD code with the CAMRAD II comprehensive CSD code.  A study of dual-

 

 
Figure 12. Normal force coefficient variation with azimuth angle at various radial stations.  BVI case, flight 
counter C8513, M∞=0.096, µ = 0.15. 

 
     (a) Normal force convergence.          (b) Pitching moment convergence. 

Figure 13. CFD/CSD loose-coupling convergence. BVI case, flight counter C8513, M∞=0.096, µ = 0.15. 



 
 

14 

time stepping accuracy was carried out and the following observations and recommendations are provided for 
efficient dual-time accuracy.  Larger time steps with enough dual-time subiterations for convergence tend to result in 
less computational work while maintaining time accuracy.  However, if the time step is too large, the dual-time 
process may diverge with an increased number of subiterations.  It is also important to choose a time step that 
resolves all frequencies of interest while maintaining less than one L1 Cartesian grid cell of travel by the rotor tip.  
Two flight counter cases, high-speed and BVI, were simulated and compared with available experimental data.  The 
computed normal force and pitching moment coefficients were found to be in good agreement with flight-test data, 
and achieved a factor of two improvement in the state-of-the-art prediction accuracy.  This improvement is 
attributed to using 5th-order spatial differences rather than 3rd-order spatial differences often used by other 
investigators.   
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